jueves, 15 de noviembre de 2012



TEORÍA CINÉTICA DE LOS GASES

La teoría cinética de los gases es una teoría física y química que explica el comportamiento y propiedades macroscópicas de los gases a partir de una descripción estadística de los procesos moleculares microscópicos. La teoría cinética se desarrolló con base en los estudios de físicos como Ludwig Boltzmann y James Clerk Maxwell a finales del siglo XIX.
Esta rama de la física describe las propiedades térmicas de los gases. Estos sistemas contienen números enormes de átomos o moléculas, y la única forma razonable de comprender sus propiedades térmicas con base en la mecánica molecular, es encontrar determinadas cantidades dinámicas de tipo promedio y relacionar las propiedades físicas observadas del sistema con estas propiedades dinámicas moleculares en promedio. Las técnicas para relacionar el comportamiento macroscópico global de los sistemas materiales con el comportamiento promedio de sus componentes moleculares constituyen la mecánica estadística.

LEYES DE LOS GASES
Las primeras leyes de los gases fueron desarrollados a finales del siglo XVII, cuando los científicos empezaron a darse cuenta de que en las relaciones entre la presión, el volumen y la temperatura de una muestra de gas se podría obtener una fórmula que sería válida para todos los gases. Estos se comportan de forma similar en una amplia variedad de condiciones debido a la buena aproximación que tienen las moléculas que se encuentran más separadas, y hoy en día la ecuación de estado para un gas ideal se deriva de la teoría cinética. Ahora las leyes anteriores de los gases se consideran como casos especiales de la ecuación del gas ideal, con una o más de las variables mantenidas constantes.

Ley De Boyle: Muestra que, a temperatura constante, el producto entre la presión y el volumen de un gas ideal es siempre constante. Fue publicado en 1662. Se puede determinar experimentalmente con un manómetro y un recipiente de volumen variable. También se pueden encontrar a través del uso de la lógica, si un contenedor, con una cantidad fija de moléculas en el interior, se reduce en volumen, más moléculas impactan en los lados del recipiente por unidad de tiempo, provocando una mayor presión.
Como una ecuación matemática, la ley de Boyle es la siguiente:
PV = k_1\,
Donde P es la presión (Pa), V el volumen (m3) de un gas, y k1 (medido en julios) es la constante de esta ecuación -no es la misma que las constantes de las ecuaciones de otras fórmulas de abajo.

Ley De Charles: O ley de los volúmenes, fue descubierta en 1678. Se dice que, para un gas ideal a presión constante, el volumen es directamente proporcional a latemperatura absoluta (en grados Kelvin).
Esto se puede encontrar utilizando la teoría cinética de los gases o un recipiente con calentamiento o enfriamiento [sin congelar <0] con un volumen variable (por ejemplo, un frasco cónico con un globo).
V = k_2T \,
Donde T es la temperatura absoluta del gas (en grados Kelvin) y k2 (en m3·K−1) es la constante producida.

Combinación y Leyes De Los Gases Ideales: La ley general de los gases o ecuación general de los gases está formada por la combinación de las tres leyes, y muestra la relación entre la presión, volumen y temperatura de una masa fija de gas:
V = k_4n \,
Con la incorporación de la ley de Avogadro, la Ley general de los gases se convierte en la ley de los gases ideales:
PV = k_5T \,
Donde la constante, ahora llamada R, es la constante de los gases, con un valor de .08206 (atm∙L)/(mol∙K)
Una formulación equivalente de esta ley es:
PV = kNT \,
donde
k es la constante de Boltzmann (1.381×10−23 J·K−1 en unidades del SI)
N es el número de moléculas.
Estas ecuaciones sólo son exactas para un gas ideal, que no toma en cuentas varios efectos intermoleculares (ver gas real). Sin embargo, la ley del gas ideal es una buena aproximación para la mayoría de los gases a presión y temperatura moderada.
Esta ley tiene las siguientes consecuencias importantes:
  1. Si la temperatura y la presión se mantienen constantes, el volumen del gas es directamente proporcional al número de moléculas del gas.
  2. Si la temperatura y volumen permanecen constantes, cuando la presión del gas cambia, lo hace directamente proporcional al número de moléculas de gas presente.
  3. Si el número de moléculas de gas y la temperatura permanecen constantes, la presión es inversamente proporcional al volumen.
  4. Si los cambios de temperatura y el número de moléculas de gas se mantienen constantes, entonces o bien la presión o bien el volumen (o ambos), cambiarán en proporción directa con la temperatura.


SOLUCIONES

Una disolución, también llamada solución, es una mezcla homogénea a nivel molecular o iónico de dos o más sustancias, que no reaccionan entre sí, cuyos componentes se encuentran en proporción que varía entre ciertos límites. Describe un sistema en el cual una o más sustancias están mezcladas o disueltas en forma homogénea en otra sustancia también se puede definir como una mezcla homogénea formada por un solvente y por uno o varios solutos. Un ejemplo común podría ser un sólido disuelto en un líquido, como la sal o el azúcar disueltos en agua; o incluso el oro en mercurio, formando una amalgama.

SOLVENTE Y SOLUTO:
Frecuentemente, uno de los componentes es denominado solventedisolventedispersante o medio de dispersión y los demás solutos. Los criterios para decidir cuál es el disolvente y cuáles los solutos son más o menos arbitrarios; no hay una razón científica para hacer tal distinción.
Se suele llamar solvente al componente que tiene el mismo estado de agregación que la disolución; y soluto o solutos, al otro u otros componentes. Si todos tienen el mismo estado, se llama disolvente al componente que interviene en mayor proporción de masa,4 aunque muchas veces se considera disolvente al que es más frecuentemente usado como tal (por ejemplo, una disolución conteniendo 50% de etanol y 50% de agua, es denominada solución acuosa de etanol). En el caso de dos metales disueltos mutuamente en estado sólido, se considera disolvente a aquél cuya estructura cristalina persiste en la solución; si ambos tienen la misma estructura (ej.: aleación|aleaciones paladio-plata), se considera disolvente al metal que ocupa la mayoría de las posiciones en la estructura cristalina.5
Wilhelm Ostwald distingue tres tipos de mezclas según el tamaño de las partículas de soluto en la disolución:
  • Dispersionessuspensiones o falsas disoluciones: cuando el diámetro de las partículas de soluto excede de 0,1 μm
  • Dispersoidescoloides o disoluciones coloidales: el tamaño está entre 0,001 μm y 0,1 μm
  • Dispérsidos o disoluciones verdaderas: el tamaño es menor a 0,001 μm
Estas últimas se clasifican en:
  • Disoluciones con condensación molecular: la partícula dispersa está formada por una condensación de moléculas.
  • Disoluciones moleculares: cada partícula es una molécula.
  • Disoluciones iónicas: la partícula dispersa es un ion (fracción de molécula con carga eléctrica).
  • Disoluciones atómicas: cada partícula dispersa es un átomo.

Características Generales:

  • Son mezclas homogéneas: las proporciones relativas de solutos y solvente se mantienen en cualquier cantidad que tomemos de la disolución (por pequeña que sea la gota), y no se pueden separar por centrifugación ni filtración.
  • La disolución consta de dos partes: soluto y solvente.
  • Cuando la sustancia se disuelve,esta desaparece.
  • Al disolver una sustancia, el volumen final es diferente a la suma de los volúmenes del disolvente y el soluto.
  • La cantidad de soluto y la cantidad de disolvente se encuentran en proporciones que varían entre ciertos límites. Normalmente el disolvente se encuentra en mayor proporción que el soluto, aunque no siempre es así. La proporción en que tengamos el soluto en el seno del disolvente depende del tipo de interacción que se produzca entre ellos. Esta interacción está relacionada con la solubilidad del soluto en el disolvente.
  • Las propiedades físicas de la solución son diferentes a las del solvente puro: la adición de un soluto a un solvente aumenta su punto de ebullición y disminuye su punto de congelación; la adición de un soluto a un solvente disminuye la presión de vapor de éste.
  • Sus propiedades físicas dependen de su concentración:
Disolución HCl 12 mol/L; densidad = 1,18 g/cm3
Disolución HCl 6 mol/L; densidad = 1,10 g/cm3
  • Las propiedades químicas de los componentes de una disolución no se alteran.
  • Sus componentes se separan por cambios de fases, como la fusión, evaporación, condensación, etc.
  • Tienen ausencia de sedimentación, es decir, al someter una disolución a un proceso de centrifugación las partículas del soluto no sedimentan debido a que el tamaño de las mismas son inferiores a 10 Angstrom ( Å ).
  • Se encuentran en una sola fase.

CLASES DE SOLUCIONES:

  • Disolución diluida: es aquella en donde la cantidad de soluto que interviene está en mínima proporción en un volumen determinado.
  • Disolución concentrada: tiene una cantidad considerable de soluto en un volumen determinado.
  • Disolución insaturada: no tiene la cantidad máxima posible de soluto para una temperatura y presión dadas.
  • Disolución saturada: tienen la mayor cantidad posible de soluto para una temperatura y presión dadas. En ellas existe un equilibrio entre el soluto y el disolvente.
  • Disolución sobresaturada: contiene más soluto del que puede existir en equilibrio a una temperatura y presión dadas. Si se calienta una solución saturada se le puede agregar más soluto; si esta solución es enfriada lentamente y no se le perturba, puede retener un exceso de soluto pasando a ser una solución sobresaturada. Sin embargo, son sistemas inestables, con cualquier perturbación el soluto en exceso precipita y la solución queda saturada; esto se debe a que se mezclaron.


SOLUBILIDAD

La solubilidad es una medida de la capacidad de disolverse una determinada sustancia (soluto) en un determinado medio (solvente); implícitamente se corresponde con la máxima cantidad de soluto disuelto en una dada cantidad de solvente a una temperatura fija y en dicho caso se establece que la solución está saturada. Su concentración puede expresarse en moles por litro, en gramos por litro, o también en porcentaje de soluto (m(g)/100 mL) . El método preferido para hacer que el soluto se disuelva en esta clase de soluciones es calentar la muestra y enfriar hasta temperatura ambiente (normalmente 25 C). En algunas condiciones la solubilidad se puede sobrepasar de ese máximo y pasan a denominarse como soluciones sobresaturadas.
No todas las sustancias se disuelven en un mismo solvente. Por ejemplo, en el agua, se disuelve el alcohol y la sal, en tanto que el aceite y la gasolina no se disuelven. En la solubilidad, el carácter polar o apolar de la sustancia influye mucho, ya que, debido a este carácter, la sustancia será más o menos soluble; por ejemplo, los compuestos con más de un grupo funcional presentan gran polaridad por lo que no son solubles en éter etílico.

FACTORES QUE DETERMINAN LA SOLUBILIDAD:
La solubilidad se define para fases específicas. Por ejemplo, la solubilidad de aragonito y calcita en el agua se espera que difieran, si bien ambos son polimorfos de carbonato de calcio y tienen la misma fórmula química.
La solubilidad de una sustancia en otra está determinada por el equilibrio de fuerzas intermoleculares entre el disolvente y el soluto, y la variación de entropía que acompaña a la solvatación. Factores como la temperatura y la presión influyen en este equilibrio, cambiando así la solubilidad.
La solubilidad también depende en gran medida de la presencia de otras sustancias disueltas en el disolvente como por ejemplo la existencia de complejos metálicos en los líquidos. La solubilidad dependerá también del exceso o defecto de algún ion común, con el soluto, en la solución; tal fenómeno es conocido como el efecto del ion común. En menor medida, la solubilidad dependerá de la fuerza iónica de las soluciones. Los dos últimos efectos mencionados pueden cuantificarse utilizando la ecuación de equilibrio de solubilidad.
Para un sólido que se disuelve en una reacción redox, la solubilidad se espera que dependa de las posibilidades (dentro del alcance de los potenciales en las que el sólido se mantiene la fase termodinámicamente estable). Por ejemplo, la solubilidad del oro en el agua a alta temperatura se observa que es casi de un orden de magnitud más alta cuando el potencial redox se controla mediante un tampón altamente oxidante redox Fe3O4-Fe2O3 que con un tampón moderadamente oxidante Ni-NiO.1
La solubilidad (metaestable) también depende del tamaño físico del grano de cristal o más estrictamente hablando, de la superficie específica (o molar) del soluto. Para evaluar la cuantificación, se debe ver la ecuación en el artículo sobre el equilibrio de solubilidad. Para cristales altamente defectuosos en su estructura, la solubilidad puede aumentar con el aumento del grado de desorden. Ambos efectos se producen debido a la dependencia de la solubilidad constante frente a la denominada energía libre de Gibbs asociada con el cristal. Los dos últimos efectos, aunque a menudo difíciles de medir, son de relevante importancia en la práctica pues proporcionan la fuerza motriz para determinar su grado de precipitación, ya que el tamaño de cristal crece de forma espontánea con el tiempo.





No hay comentarios:

Publicar un comentario